Teorema di Descartes: dimostrazione

tramite: O2O
Difficoltà: media
14

Introduzione

In geometria il teorema di Descartes è quel teorema che esprime la relazione tra quattro circonferenze tangenti tra di loro. Tale teorema può essere utilizzata anche per creare una quarta circonferenza avendone tre, dove naturalmente tutte quattro hanno almeno un punto di tangenza. Storicamente a dimostrare tale teorema fu Cartesio in una lettera spedita alla principessa Elisabetta de Hervorden definendolo il teorema delle circonferenze che si baciano. Qui tratteremo brevemente del Teorema di Descartes e la sua dimostrazione.

24

Prima di tutto introduciamo alcune definizioni sulla circonferenza. La circonferenza è l’insieme dei punti del piano che hanno tutti la stessa distanza da un punto fisso detto centro. La distanza dal centro ad un punto qualunque esterno sulla circonferenza, viene chiamata raggio. Come tutte le figure piane della circonferenza abbiamo sia l’aria che il perimetro che si possono calcolare con le opportune formule. Con le opportune osservazioni Descartes osservo la reciprocità e la possibilità di ottenere una quanta circonferenza partendo dalle prime tre. Di seguito si trova l’enunciato di Descartes.

34

Il teorema di Descartes può essere cosi enunciato: Dati tre punti distinti, facendo centro in essi si traccino tre circonferenze tangenti tra di loro. Si osserva che ci sono esattamente due circonferenze tangenti alle tre circonferenze date, una interna e una esterna. Cartesio calcolò la relazione tra i raggi delle tre circonferenze date e quello di una delle due circonferenze tangenti alle prime tre, tenendo in considerazione la curvatura delle circonferenze e i reciproco raggi del n-esima circonferenza. Lo sviluppo del teorema di Descartes permette inoltre la possibilità di conoscere il raggio di una delle quattro circonferenze conoscendo il raggio delle prime tre. Non che applicando le formule inverse o il teorema di Descartes in forma complessa, tutti i parametri che caratterizzano la circonferenza.

Continua la lettura
44

Tale teorema rappresentò la base anche per lo sviluppo in altri campi di ricerca che permisero addirittura al chimico Soddy di ottenere il premio Nobel per la chimica in quanto grazie al teorema di Descartes dimostrò l’orbita degli elettroni in un atomo introducendo un importante concetto di isotropia tra atomi, rappresentando la base per lo sviluppo di nuovi teoremi riguardanti la tangenza di figure solide come le sfere ampliando gli orizzonti della geometria.

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Università e Master

Teorema di Bolzano: dimostrazione

Il "Teorema di Bolzano" (o "teorema degli zeri per le funzioni continue") prende il nome dal matematico e filosofo boemo Bernard Bolzano, vissuto tra il XVIII ed il XIV secolo. Tale teorema (da non confondere con il "teorema di Bolzano-Weierstrass" sulle...
Università e Master

Teorema di Löwenheim-Skolem: dimostrazione

In questo articolo vorrei illustrarvi la dimostrazione del Teorema di Löwenheim-Skolem. Il Teorema di Löwenheim-Skolem si chiama così perché prende il suo nome dai suoi matematici ideatori Leopold Löwenheim e Thoralf Skolem. Il Teorema di Löwenheim-Skolem...
Università e Master

Teorema dei valori intermedi: dimostrazione

Il teorema dei valori intermedi è uno dei più importanti in matematica: esso serve infatti per arrivare, attraverso dei ragionamenti successivi, a definire il famoso e importante teorema di Weierstrass. Con i passaggi che seguono andremo a vedere nello...
Università e Master

Teorema della curva di Jordan: dimostrazione

Teorema ricorrente negli studi di materie universitarie come la geometria, l'analisi e la topologia di spazi euclidei è il Teorema della Curva di Jordan. Sono infatti moltissimi gli enunciati che, a partire da questo teorema, ci restituiscono soluzioni...
Università e Master

Teorema di Krasnoselskii: dimostrazione

Il Teorema di Krasnoselskii è uno dei teoremi di punto fisso che sono uno dei principali strumenti dell'analisi matematica non lineare. Questi teoremi hanno una miriade di applicazioni pratiche. I suoi risultati riguardano un operatore singolo; ma le...
Università e Master

Teorema di Eulero (aritmetica modulare): dimostrazione

Questa guida dal titolo "Teorema di Eulero (aritmetica modulare): dimostrazione" si prefigge di dimostrare cos'è. Il Teorema di Eulero può essere considerato in alcuni casi la conseguenza del teorema di Lagrange, che spiegherò in modo dettagliato nei...
Università e Master

Teorema di Eulero: dimostrazione

Il Teorema di Eulero (chiamato anche Teorema di Fermat-Eulero) dimostra che se è un intero positivo e un coprimo (interi che non hanno nessun divisore a eccezione di 1 e -1, se il loro massimo comune divisore è 1) rispetto a. In questo modo φ() ≡...
Università e Master

Teorema di Desargues: dimostrazione

Come avrete già potuto comprendere leggendovi il titolo che accompagna la nostra guida, ora ci concentreremo su un tema davvero importante. La materia che tratteremo sarà la geometria analitica, in quanto proveremo, nei prossimi tre passi, a spiegare...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.