Cominciamo subito la dimostrazione partendo dall'enunciato: sia f una funzione continua in ogni punto di un intervallo chiuso [a, b]. Si scelgano due punti arbitrari X1: la prima cosa da considerare è che stiamo parlando di una funzione continua, ovvero una funzione che non ha discontinuità nell'intervallo che stiamo considerando, che in questo caso chiuso, ossia che comprende anche gli estremi nell'insieme. Questo vuol dire che, per Bolzano, essa ammetterà un punto nell'intervallo, in cui la derivata sarà nulla. Allora, prendendo due funzioni interne ad [a, b] e creando un sottointervallo (X1, X2), il teorema va a dimostrare che tutta la funzione è definita nello stesso sottointervallo descritto dalle funzioni che lo delimitano.