La matematica è una materia piuttosto ampia e complessa che racchiude in se moltissimi argomenti, molti dei quali collegati fra di loro. Tra gli argomenti più discussi e spiegati in ogni classe possiamo trovare le derivate parziali. Per imparare al meglio questo argomento è bene partire dalle basi, per poi affrontare problemi più complessi.
Il termine derivazione parziale implica l'esistenza di una funzione di più variabili:
Esempio:
z= f (x, y)
La derivata, in generale, può essere immaginata come la pendenza della funzione, in un singolo punto, definito dalle coordinate (es: x ed y). Per una funzione a 2 variabili possiamo immaginare f come una superficie e la derivata parziale descrive il variare della pendenza della funzione f rispetto ad una singola coordinata (es: x), tenendo costante l'altra (y), il che si può rappresentare graficamente come nell'immagine sezionando la funzione con un piano A= y costante (si indica con trattino sopra), e trattando la funzione che si ottiene come z= f (x).
Si da per scontata la conoscenza delle derivate, ricordando solo le regole principali.