Criteri di congruenza dei triangoli: dimostrazione

Tramite: O2O
Difficoltà: media
15

Introduzione

In geometria si definiscono congruenti due poligoni che hanno stessa forma e dimensione. In maniera più rigorosa si definiscono congruenti due poligoni che possono essere trasformati l?uno nell?altro tramite operazioni isometriche, di traslazione, di rotazione o di riflessione. La congruenza dei triangoli è una specializzazione delle regole generali esistenti sui poligoni. Nel dettaglio esistono tre criteri di congruenza dei triangoli e per ognuno di essi la relativa dimostrazione. In questa guida analizzeremo i criteri di congruenza dei triangoli e procederemo alla loro dimostrazione.

25

Il primo criterio afferma che due triangoli sono congruenti se hanno ordinatamente congruenti due lati e l'angolo tra essi compreso. Dati due triangoli ABC e A'B'C' che abbiano AB=A'B', BC=B'C' e l'angolo B=B', dimostriamo la loro congruenza. Per cui visto che l'angolo in B=B', esiste un movimento che porta tali angoli a sovrapporsi, per cui le semirette AB e BC vanno rispettivamente sulle semirette A'B' e B'C'; i segmenti AB e BC di tali semirette, coincidono con i segmenti A'B' e B'C' ad essi congruenti. Per cui si evince che i tre vertici dei due triangoli coincidono, allora ne consegue che i due triangoli sono congruenti.

35

L'enunciato del secondo criterio, per quanto concerne i triangoli, afferma che due triangoli sono congruenti se hanno rispettivamente congruenti un lato e i due angoli adiacenti. Pertanto i triangoli ABC e A'B'C' hanno AB=A'B', l'angolo in A=A' e l'angolo in B=B'; partendo da questa tesi procediamo a dimostrare che i due triangoli sono congruenti. Il movimento che porta la semiretta AB sulla semiretta A'B' ed il semipiano (AB, C) su (A'B', C'), essendo AB=A'B' porta a coincidere naturalmente anche B con B'. Lo stesso movimento, essendo l'angolo in A=A' e l'angolo B=B', porta anche la semiretta AC a coincidere con la semiretta A'C' e la semiretta BC a sovrapporsi sulla semiretta B'C', ne consegue che il punto C coincide con C''. Pertanto abbiamo dimostrato l'ipotesi iniziale e pertanto il secondo enunciato di congruenza dei triangoli.

Continua la lettura
45

Infine il terzo criterio che dimostreremo ha come ipotesi la seguente formulazione: due triangoli sono congruenti se hanno rispettivamente congruenti i tre lati. Siano dati i triangoli ABC e A'B'C' aventi, per ipotesi, i tre lati ordinatamente congruenti. Si vuol dimostrare che essi sono congruenti. Consideriamo il triangolo ABC e sul lato AC procediamo con il costruire il triangolo AB"C congruente al triangolo A'B'C'. Il segmento BB" incontrerà la retta AC in un punto P, che potrà essere interno al segmento AC o, coincidente con uno dei suoi estremi, o anche esterno. Prendendo in considerazione la prima casistica. Il triangolo ABB" ha AB= AB", perché entrambi congruenti ad A'B' perciò è isoscele ed avrà l'angolo in B=B". Anche il triangolo BCB'' ha BC=B"C, perché entrambi congruenti a B'C', perciò anch'esso è isoscele ed avrà l'angolo in B=B''. Allora gli angoli in B e B" sono congruenti e di conseguenza i triangoli ABC ed A'B'C', avendo due lati e l'angolo compreso ordinatamente congruenti sono congruenti per il primo criterio d'uguaglianza ne consegue che i triangoli ABC ed A'B'C' sono congruenti in quanto entrambi congruenti ad AB"C.

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Università e Master

Teorema della farfalla: dimostrazione

Secondo Coxeter e Greitzer, una delle soluzioni per il teorema della farfalla è stato presentato nel 1815 da WG Horner. Più di recente, una dimostrazione risalente al 1805 di William Wallace è stata scoperta negli archivi della famiglia di Wallace....
Università e Master

Teorema di Binet: dimostrazione

Come ben saprete, ogni materia rappresenta sempre una componente di ricerca e approfondimento da parte degli studiosi. La costante ricerca occorre per giungere con totale soddisfazione a svolgere l'attività lavorativa con dedizione e professionalità....
Università e Master

Teorema di Eulero (aritmetica modulare): dimostrazione

Questa guida dal titolo "Teorema di Eulero (aritmetica modulare): dimostrazione" si prefigge di dimostrare cos'è. Il Teorema di Eulero può essere considerato in alcuni casi la conseguenza del teorema di Lagrange, che spiegherò in modo dettagliato nei...
Università e Master

Teorema di Bolzano: dimostrazione

Il "Teorema di Bolzano" (o "teorema degli zeri per le funzioni continue") prende il nome dal matematico e filosofo boemo Bernard Bolzano, vissuto tra il XVIII ed il XIV secolo. Tale teorema (da non confondere con il "teorema di Bolzano-Weierstrass" sulle...
Università e Master

Teorema di Löwenheim-Skolem: dimostrazione

In questo articolo vorrei illustrarvi la dimostrazione del Teorema di Löwenheim-Skolem. Il Teorema di Löwenheim-Skolem si chiama così perché prende il suo nome dai suoi matematici ideatori Leopold Löwenheim e Thoralf Skolem. Il Teorema di Löwenheim-Skolem...
Università e Master

Teorema dei valori intermedi: dimostrazione

Il teorema dei valori intermedi è uno dei più importanti in matematica: esso serve infatti per arrivare, attraverso dei ragionamenti successivi, a definire il famoso e importante teorema di Weierstrass. Con i passaggi che seguono andremo a vedere nello...
Università e Master

Teorema della curva di Jordan: dimostrazione

Teorema ricorrente negli studi di materie universitarie come la geometria, l'analisi e la topologia di spazi euclidei è il Teorema della Curva di Jordan. Sono infatti moltissimi gli enunciati che, a partire da questo teorema, ci restituiscono soluzioni...
Università e Master

Teorema della dimensione per spazi vettoriali: dimostrazione

Il teorema della dimensione per spazi vettoriali è un teorema fondamentale della geometria e dell'algebra lineare, utile a trovare la reale dimensione di uno spazio basandosi sulla conoscenza di un'applicazione lineare che, da uno spazio iniziale, raggiunge...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.