Anche se l'analisi matematica potrebbe sembrare un argomento molto complesso, i suoi teoremi, le sue formule ed i suoi esercizi sono esplicativi e dimostrativi dell'applicazione di teorie. Pertanto, entrando nell'ottica di questa affascinante materia e comprendendone il meccanismo, si può godere di notevoli soddisfazioni, ogniqualvolta si arriva alla risoluzione di un problema affrontato. In matematica il criterio di limite è di fondamentale importanza, perché consente svariati tipi di calcolo, come ad esempio quello di sommare elementi infiniti sempre più piccoli che ci condurranno ad un risultato abbastanza vicino alla realtà, ossia ad un valore che può essere: finito, infinito o inesistente. In altri termini si tratta di un valore che viene avvicinato sempre più da una funzione senza mai essere raggiunto da essa. Questo succede nel caso in cui la variabile indipendente (generalmente x) tende a zero, a infinito o ad un valore specifico dell'intervallo di esistenza della funzione. Vediamo dunque come trovare il limite di una funzione trigonometrica.