Come trovare gli asintoti nelle funzioni

Tramite: O2O
Difficoltà: media
17

Introduzione

La matematica è sicuramente una delle materie più complesse da studiare e non tutti riescono a capire tutti gli argomenti con facilità. Grazie ad internet potremo ricercare fra le moltissime guide esistenti la spiegazione dell'argomento che non riusciamo a comprendere, magari con lo svolgimento di qualche semplice esercizio in modo da farci capire nella pratica come si utilizzano le varie formule e i vari teoremi. In questa guida, in particolare, vedremo come fare per riuscire a trovare correttamente gli asintoti nelle funzioni.

27

Definizione di asintoto

Ricordiamo per prima cosa, la definizione di asintoto. Questa è una retta o una curva alla quale si avvicina una funzione. Esistono tre tipi di asintoti: asintoto rizzontale, asintoto verticale e asintoto obliquo. Per calcolare questi, bisogna, risolvere dunque i limiti. Partiamo da quello orizzontale, il più facile.

37

Asintoto orizzontale

Un asintoto è orizzontale in una funzione quando ha per ingresso del limite un valore infinito e per uscita un valore finito. Ad esempio, limite per x che tende a infinito di f (x) = 3. Questo è un asintoto orizzontale. Ricordatevi inoltre, che gli asintoti orizzontali non posso coesistere con quelli obliqui. Un'altra cosa importantissima da ricordare, è quella che un limite che ha per ingresso ed uscita, entrambi i valore finiti oppure infiniti, non presenta asintoti.

Continua la lettura
47

Asintoto verticale

Passiamo ora, al calcolo dell'asintoro verticale. Questo è presente in una funzione, il cui limite ha per ingresso un valore finito e per uscita un valore infinito, ovvero: limite per x che tende a 3 = infinito. In questo caso per calcolare il limite, bisogna prime trovare il dominio della funzione, ed a seconda del tipo, analizzare denominatore e numeratore. Ricordate, infine, che gli asintoti verticali invece posso coesistere sia con quelli orizzontali che obliqui.

57

Asintoto obliquo

Infine vi è l'asintoto obliquo. Per trovarlo bisogna risolvere una determinata formula ovvero y=mx+q. M sta a significare "coefficiente angolare" e deve essere sempre diverso da 0, altrimenti si tratterebbe di un asintoto orizzontale (si spiega cosi il motivo per cui questi due non posso coesistere in una funzione). Il valore m si trova dividendo il denominatore della funzione per x. Invece il valore q, si trova sottraendo alla funzione, il valore m (trovato nel passaggio precedente) aggiunto alla x. Entrambi i valori vanno trovati ponendo il limite che tende ad infinito. Con queste considerazioni si conclude la nostra guida su come calcolare gli asintoti di una funzione.

67

Guarda il video

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Segnala il video che ritieni inappropriato
Devi selezionare il video che desideri segnalare
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Superiori

Come trovare il dominio nelle funzioni razionali fratte

Nel corso dei propri studi, sarà capitato a tutti di doversi imbattere in problemi matematici con la presenza di funzioni, segni e dominio. In questo articolo cercheremo di capire come risolvere e trovare il dominio nelle funzioni razionali fratte, ovvero...
Superiori

Come si calcolano gli asintoti verticale, orizzontale o obliquo in una funzione razionale fratta

In questa guida forniremo il procedimento risolutivo di un dilemma matematico molto comune. Vedremo infatti come si calcolano gli asintoti verticale, orizzontale o obliquo in una funzione razionale fratta. Seguendo i passi qui descritti dovreste essere...
Superiori

Come trovare l'asintoto verticale di una funzione f(x)?

L'analisi è la branca della matematica che studia le funzioni in base alle loro proprietà e caratteristiche. Quando ci troviamo di fronte ad una formula del tipo y=f(x) spesso non abbiamo la minima idea del suo effettivo comportamento, e dobbiamo per...
Superiori

Come calcolare l'asintoto obliquo nelle funzioni

In matematica ci sono alcuni concetti che possono essere fonte di incomprensione se non vengono affrontati sin dall'inizio in maniera appropriata. Uno di questi è rappresentato dalle funzioni, di cui si devono per esempio studiare domini, limiti e asintoti....
Superiori

Studio di funzioni goniometriche

Imparate a studiare le funzioni goniometriche è molto utile per via dell'importanza che esse rivestono in moltissimi ambiti sia della matematica, nell'ambito dell'elettronica ed elettrotecnica, della meccanica e delle telecomunicazioni. Queste funzioni...
Superiori

Come creare grafici di funzioni matematiche

Disegnare e rappresentare il grafico di funzioni matematiche è un'operazione difficile e non molto veloce. Per riuscire a disegnare in un sistema di riferimento cartesiano l'andamento di una funzione occorre una buona conoscenza matematica e una praticità...
Superiori

Matematica: studio del segno e dominio delle funzioni

La guida che verrà esposta in seguito si concentrerà sulla matematica, in quanto vi sarà data una spiegazione logica e più possibile semplificata riguardante lo studio del segno e dominio delle funzioni. La matematica rimane sempre la materia più...
Superiori

Come disegnare il grafico della somma di funzioni

Quello che vogliamo spiegare in questo articolo è come calcolare e disegnare la somma di due funzioni, sia dal punto di vista grafico, che da quello algebrico.Tenendo presente che una qualsiasi funzione stabilisce un legame tra la variabile dipendente...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.