Come studiare una funzione Matematica

tramite: O2O
Difficoltà: media
17

Introduzione

Una funzione è un insieme di operazioni matematiche eseguite su uno o più ingressi (variabili), che si traduce in un'uscita. Una semplice funzione potrebbe restituire l'ingresso più uno. Tale funzione sarà simile: Y = X + 1In questo caso, X nel valore di ingresso, e Y è l'uscita (questa è una convenzione comune). Mettendo qualsiasi numero per X, si calcola una produzione corrispondente Y con la semplice aggiunta di uno. L'insieme di possibili valori di input è noto come dominio, mentre l'insieme dei possibili uscite è noto come intervallo. Qui ci sono altri due esempi di ciò che funzioni assomigliano: y = 3x-2h = 5x + 4yNella funzione y = 3x-2, la variabile y rappresenta la funzione di qualsiasi ingressi appaiono sull'altro lato dell'equazione. In altre parole, y è una funzione di x. A causa di ciò, a volte vediamo la funzione scritta in questa forma: f (x) = 3x-2
Ciò significa che lo stesso come y = davanti un'equazione. Poiché non c'è davvero alcun significato y, ed è solo una lettera arbitrario che rappresenta l'uscita della funzione, a volte sarà scritto come f (x) per indicare l'espressione è una funzione di x. Ecco come studiare una funzione matematica.

27

Occorrente

  • carta millimetrata
37

Il primo passo per lo studio di una funzione è quello di capire che tipo di funzione si tratti e soprattutto il suo dominio, cioè in quale intervallo di valori essa è definita ed esiste. Importante è verifica se sono presenti denominatori o radici quadrate, nel primo caso si deve verificare che il denominatore non sia uguale a zero (altrimenti la funzione è nulla), mentre le radici devono essere di segno positivo.

47

Per determinare il segno di una funzione basta porre f (x) > 0 e vedere se la curva è ubicata sopra o sotto l'asse X; mentre per vedere in che modo essa intercetta l'asse X si pone x = 0. Di notevole importanza sono anche gli asintoti, cioè rette a cui la funzione si avvicina sempre di più tendente all'infinito. Essi possono essere orizzontali (la loro funzione è y = k), verticali (la curva è espressa da x = d) e obliqui (la retta si avvicina di x = +inf.).

Continua la lettura
57

Trovati gli eventuali asintoti della funzione si passa allo studio della derivata prima per determinare gli eventuali punti di massimo e\o di minimo e per determinare la crescenza o la decrescenza della funzione:
- se f '(x) < 0 allora f è decrescente, invece se f '(x) > 0 allora f è crescente.

Inoltre, ti ricordo che nei punti in cui f'(x)= 0 e\o f'(x) NON ESISTE ci potrebbero essere massimi o minimi.

67

Bene, a questo punto occorre dare uno sguardo alla derivata seconda, la quale serve a determinare la convessità, la concavità della funzione e gli eventuali punti di flesso. Se f '(x) > 0 allora f è convessa (concavità verso l'alto), mentre se f' '(x) < 0 allora f è concava. Nei punti in cui f'(x)= 0 e\o f'(x) NON ESISTE, ci potrebbero essere flessi. Infine bisogna disegnare il grafico della tua funzione.

77

Consigli

Non dimenticare mai:
  • esercitarsi molto

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Superiori

Come disegnare il grafico di una funzione

Quando si parla di grafico di una funzione, ci si riferisce a quell'insieme di punti, rappresentato all'interno del piano cartesiano, in cui all'ascissa "x", viene associata l'ordinata "y", facendo riferimento al valore del dominio della funzione stessa....
Superiori

Come trovare i punti di flesso di una funzione

In Analisi Matematica, lo studio di funzione è una delle operazioni fondamentali per studiare il comportamento di qualunque funzione, che sia lineare, esponenziale o trigonometrica. Consta di vari passaggi che vanno eseguiti secondo un certo ordine,...
Superiori

Come trovare i punti di flesso a tangente obliqua

I punti di flesso corrispondono al cambio di curvatura o concavità che si manifesta su una curva. Il metodo più utilizzato per scoprire questi punti è calcolare delle derivate. Tale procedimento è applicabile sia su tangente obliqua che verticale....
Superiori

Come creare grafici di funzioni matematiche

Disegnare e rappresentare il grafico di funzioni matematiche è un'operazione difficile e non molto veloce. Per riuscire a disegnare in un sistema di riferimento cartesiano l'andamento di una funzione occorre una buona conoscenza matematica e una praticità...
Superiori

Come si calcolano gli asintoti verticale, orizzontale o obliquo in una funzione razionale fratta

In questa guida forniremo il procedimento risolutivo di un dilemma matematico molto comune. Vedremo infatti come si calcolano gli asintoti verticale, orizzontale o obliquo in una funzione razionale fratta. Seguendo i passi qui descritti dovreste essere...
Università e Master

Studio grafico analitico di una funzione razionale

Lo studio di una funzione algebrica è uno degli aspetti più difficile del programma di matematica e geometria delle scuole superiori. Bisogna tenere conto di diversi aspetti durante lo studio di funzione. Il primo consiglio è quello di fare molta attenzione...
Superiori

Come Fare un corretto studio di funzione

Questo tutorial vi spiegheremo come dover affrontare uno studio corretto di funzione, in modo generico. I calcoli ed i parametri vanno infatti adattati volta per volta a quello che chiede l'esercizio. È un procedimento che cambia dal tipo di equazione...
Superiori

Come fare il grafico probabile di una funzione

La guida che vi andremo a proporre andrà a occuparsi di grafici e funzioni. Come potrete comprendere facilmente tramite la lettura del titolo stesso che accompagna questa piccola guida, ora vi spiegheremo, passo dopo passo, come fare il grafico probabile...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.