Come studiare un limite di successione

Di:
tramite: O2O
Difficoltà: difficile
14

Introduzione

In questa guida andremo a vedere come è possibile studiare un limite di successione. Ma prima di tutto è necessario sapere cos'è una successione. Una successione reale non è nient'altro che una sequenza illimitata di numeri, si parte da un numero reale e ad esso se ne abbina poi un altro e cosi via a continuare all'infinito.

24

Gli elementi di una successione sono definiti termini, essi sono riconoscibili in quanto si possono contraddistinguere mediante una lettera ma che sia sempre la stessa. Ovviamente provvista di indice.

Una successione può essere individuata mediante due modi:

- per enumerazione: ossia affianco ad ogni numero naturale il corrispettivo numero reale-mediante una funzione: individuare la successione affermando però che ad ogni numero naturale ci si abbina un numero An.

- per ricorrenza: ossia consiste nell'assegnare il primo termine e la legge che unisce i termine successivi.

Le successioni sono in reale delle vere e proprie funzione ma leggermente diverse, per cui possono equivalere le stesse definizioni usate per esse. Inoltre le successioni possono essere anche rappresentate dal punto di vista grafico, il tutto attraverso l'uso di un piano cartesiano con dei punti disegnati qua e la lungo l'asse delle ordinate e delle ascisse.

34

Una successione può essere individuata mediante due modi:


- per enumerazione: ossia affianco ad ogni numero naturale il corrispettivo numero reale-mediante una funzione: individuare la successione affermando però che ad ogni numero naturale ci si abbina un numero An.


- per ricorrenza: ossia consiste nell'assegnare il primo termine e la legge che unisce i termine successivi.


Le successioni sono in reale delle vere e proprie funzione ma leggermente diverse, per cui possono equivalere le stesse definizioni usate per esse. Inoltre le successioni possono essere anche rappresentate dal punto di vista grafico, il tutto attraverso l'uso di un piano cartesiano con dei punti disegnati qua e la lungo l'asse delle ordinate e delle ascisse.

Continua la lettura
44

Come detto in precedenza, le successioni sono delle vere e proprie funzioni, per tal motivo si può parlare di un limite di una successione. Da ciò che si può evidenziare su un apposito grafico, è visibile che non si può valutare il limite di una successione per n che tende ad un valore finito, ma essendo n illimitato, tenderà sicuramente verso l'infinito. Una successione ha un limite l è definito convergente, mentre se il limite è tendente a più o meno infinito allora sarà definito divergente. Insieme sono anche definite regolari. Se invece non vi un limite la funzione è definita irregolare. Anche nel caso delle funzioni vagono alcuno teoremi come:Unicità del limite: se ammette ammette limite esso è unico. Del confronto e infine Permanenza del segno: Nel caso i cui {an} ammette limite ` > 0, oppure +∞, allora di tratta di un limite positivo in caso contrario se (an} `e non-negativa ed ammette limite `, allora ` ≥ 0 oppure ` = +∞Monotonia ogni tipologia di tale successione risulta essere regolare. Se {an} `e monot`ona crescente o non-decrescente, si ha lim n→+∞an = supn{an}; se `e monot`ona decrescente o non-crescente, si ha lim n→+∞an = infn {an}.

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Università e Master

Come risolvere una successione numerica

Una successione numerica è una successione ordinata di numeri di varia natura. Si possono avere successioni reali, complesse, a valori vettoriali, aritmetiche o geometriche. Gli ultimi due tipi sono i più comuni e i più facili da risolvere. Nel primo...
Università e Master

Diritto delle successioni

Si parla di diritto delle successioni quando in un rapporto giuridico, questo viene trasmesso da un soggetto ad un altro senza però essere inalterato. Quindi, la successione prevede l'ingresso di un nuovo soggetto nella titolarità di uno o più rapporti...
Università e Master

Come risolvere i limiti delle successioni irrazionali

Molti studenti avranno di certo sentito parlare di "limite di una successione". Tale limite altro non è che il valore al quale tendono i termini di una successione. Con questo concetto si vuole evidenziare l'idea che esiste sempre un punto mobile che...
Università e Master

Teorema di Bolzano-Weierstrass: dimostrazione

Quando si studia alcuni argomenti molto complessi che riguardano le materie scientifiche come la matematica, la fisica, ecc., potrebbe capitare di non riuscire a comprendere tutto, in questi casi trovare ulteriori informazioni potrebbe sicuramente facilitarci...
Superiori

Il limite in matematica

La matematica è una materia piuttosto vasta e complicata che richiede moltissimi anni per essere appresa e soprattutto capita. Non sono molte le persone che si interessano a questa materia e che sono in grado di capirla ed appassionarcisi. Per poterla...
Superiori

Come dimostrare il teorema di Weierstrass

Discipline scolastiche come la matematica, la fisica o ancora la chimica sono molto interessanti, ma anche complicate. Le argomentazioni spiegano le dinamiche quotidiane. Tuttavia, non per tutti sono di facile comprensione. Alcuni concetti più di altri...
Superiori

Matematica: il criterio di Leibniz

In questa guida verranno dati utili consigli su come capire bene ed apprendere al meglio uno dei principi della matematica più studiati: il criterio di Leibniz. Esso si tratta di un argomento di calcolo aritmetico basato su una successione di numeri...
Superiori

Come calcolare la somma di una serie numerica

Il concetto di serie numerica generalizza, in matematica, l'idea intuitiva di "somma di infiniti addendi". In questa guida vedremo la definizione di serie, che formalizza in maniera rigorosa le idee precedenti, alcuni criteri che permettono di stabilire...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.