Come dimostrare il teorema di Weierstrass

tramite: O2O
Difficoltà: facile
17

Introduzione

Discipline scolastiche come la matematica, la fisica o ancora la chimica sono molto interessanti, ma anche complicate. Le argomentazioni spiegano le dinamiche quotidiane. Tuttavia, non per tutti sono di facile comprensione. Alcuni concetti più di altri risultano maggiormente complessi. Per evitare lacune, chiedi spiegazioni senza alcuna vergogna all'insegnante. Approfondisci le nozioni ricercando informazioni su internet. Nello specifico, ecco come dimostrare con semplicità il teorema di Weierstrass. Costituisce la legge fondamentale dell'analisi matematica. Tratta l'esistenza di minimi e massimi in una funzione di variabili reali.

27

Occorrente

  • Libro di matematica
  • Conoscenze matematiche di base
37

La compattezza

Puoi dimostrare il teorema di Weierstrass con diversi metodi. Potrai semplicemente utilizzare la nozione di compattezza o la successione. La prima soluzione è molto semplice. Non è eccessivamente difficoltosa o troppo particolareggiata. Il teorema si basa sulle funzioni compatte. Queste possono trasformarsi anche in funzione di y. La funzione, limitata, ammette solo massimo e minimo assoluto. I valori di massimo e di minimo assoluti della funzione in questione, sono assolutamente unici.

47

La successione dei punti

Potrai dimostrare il teorema di Weierstrass in un ulteriore modo. Impiega la successione di punti. Devi accertare che in ogni funzione esista un punto x1 la cui funzione f (x1) sia uguale al superiore. Quindi, costruisci una successione fino ad arrivare quasi al superiore di x. A questo punto, raggiungi pian piano il famigerato x1. Per fare ciò utilizza le successioni. Pertanto, crea una sequenza di numeri che tendano al superiore. In seguito, mediante la definizione del teorema di Bolzano, la successione si chiude. Come richiede il teorema di Weierstrass esistono almeno un punto di minimo e un punto di massimo assoluti.

Continua la lettura
57

Funzione in due variabili

Oltre che in una variabile, puoi dimostrare il teorema di Weierstrass nelle funzioni in due variabili. La dimostrazione è praticamente molto simile alla precedente. L'unica differenza consiste nel grafico. Anziché considerare un tradizionale piano cartesiano, utilizzane uno tridimensionale. Inoltre, in studi più approfonditi, Weierstrass affermò uguali nozioni anche per i poligoni e la geometria piana, in particolare nel quadrato. Tuttavia, questo non si collega all'analisi matematica. Per eventuali ed ulteriori dubbi, chiedi spiegazioni all'insegnante o ad un compagno di scuola preparato. Non tralasciare l'importanza dell'attenzione in classe.

67

Guarda il video

77

Consigli

Non dimenticare mai:
  • Per non incorrere in lacune, segui attentamente le spiegazioni in classe
Alcuni link che potrebbero esserti utili:

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Segnala il video che ritieni inappropriato
Devi selezionare il video che desideri segnalare
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Superiori

Come dimostrare il teorema dei seni

Il teorema dei seni (conosciuto anche come Teorema di Eulero) consente la risoluzione dei triangoli qualunque. Per riuscire a dimostrarlo in maniera efficace bisogna però possedere i "giusti" requisiti ossia le corrette nozioni di base. In questo senso...
Superiori

Come dimostrare il teorema dell'angolo esterno

La geometria comprende lo studio delle figure geometriche piane e solide e anche delle rette, degli angoli, dei perimetri, dei volumi e delle aree che in questa guida sarà illustrato. Il teorema dell'angolo esterno riveste una notevole importanza nel...
Superiori

Come dimostrare il teorema di Lagrange

Il Teorema di Lagrange è un teorema che si incontra durante lo studio delle derivate. Esso trae origine dal nome del matematico che lo ha enunciato e afferma che, data una Funzione qualsiasi f (x), "continua e derivabile" in un intervallo chiuso da "a"...
Superiori

come dimostrare il teorema delle tre perpendicolari

Il teorema delle tre perpendicolari si occupa di studiare alcune caratteristiche della posizione di due linee rette e delle sue perpendicolari. Nel piano due rette sono perpendicolari, se si incontrano formando angoli uguali, che si possono definire così...
Superiori

Come dimostrare il teorema di Pitagora con un semplice disegno

Il teorema di Pitagora è sicuramente uno dei più noti teoremi della geometria, nonché uno dei più utili. Viene infatti utilizzato per risolvere i problemi più basilari così come quelli di grado avanzato. Il suo scopo è quello di fornire la dimostrazione...
Superiori

Come dimostrare il secondo teorema di Euclide

I teoremi di Euclide sono una delle basi fondamentali della geometria, utili per capire e svolgere un problema incentrato sui triangoli rettangoli. Solitamente vengono spiegati nelle scuole medie, tuttavia risultano essere importanti anche nelle classi...
Superiori

Teorema di Rolle: dimostrazione

Il matematico francese href="https://it. Wikiped">Michel Rolle formulò uno dei più rilevanti teoremi della matematica e, per riuscirlo a comprendere bene, sarà necessario supporre anche la conoscenza del Teorema di Weierstrass e del Teorema di Fermat....
Superiori

Come dimostrare che una funzione è derivabile in un intervallo

Assai di frequente capita che uno studente di scuola superiore ma anche universitario sia chiamato a dimostrare la derivabilità di una funzione data in un determinato intervallo. Per riuscire nella prova è necessario padroneggiare con abilità concetti...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.