Come dimostrare che una successione è limitata

tramite: O2O
Difficoltà: difficile
17

Introduzione

Non tutti possono capire ogni materia che si presenta all'università o a scuola e in molti casi, una delle materie più complesse da studiare sin dalle scuole elementari è sicuramente la matematica. La matematica può mettere spesso in difficoltà a causa delle svariate tipologie di teoremi e di problemi da risolvere attraverso una valida dimostrazione di un teorema o di un calcolo matematico. Tra le varie cose da studiare, all'interno della matematica vi capiterà sicuramente (se sceglierete studi universitari come ingegneria) di dovervi cimentare nello studio delle successioni. In questa breve e semplice guida, cercheremo di aiutarvi a capire come dimostrare che una successione è limitata.

27

Occorrente

  • Libri universitari che riguardano l'analisi.
37

Sicuramente per chi studia una matematica un po' più approfondita legata a materie universitarie, è necessario sempre approfondire l'argomento con libri di testo abbastanza tecnici per capire un po' in maniera generale ma anche dettagliata, come arrivare a dimostrare parecchie teorie e parecchi teoremi. Spesso quando bisogna dimostrare che una successione è limitata, si entra in confusione e subito nel panico. Per evitare di confondervi le idee partite subito dall'affermazione che volete provare e concentratevi subito sullo studio dei numeri reali. Se infatti una successione di numeri reali converge, tutto vi sembrerà un po' più semplice.

47

Una successione è sempre limitata quando è limitata superiormente ovvero, quando esistono dei maggiorati in questo caso quindi x>an per qualunque n.
Una successione è sempre limitata superiormente anche quando esistono dei minorati ovvero, quando yLa successione quindi è limitata superiormente infatti quando x=2>an per qualsiasi 2>1/n proprio perché n>1/2 (n= 1, 2, 3 ecc..) mentre è limitata inferiormente perché an=1/n>0 per qualsiasi n. In sostanza basterà dimostrare che il termine an è minore di un dato valore per esempio di 1, per tutti i valori di n (1/n<1).

Continua la lettura
57

Una volta capito il meccanismo generale dell'analisi matematica, capirete che il limite di una successione non è altro che il valore a cui tendono i termini di una successione. Sicuramente si tratta di una parte della matematica molto complessa e molto difficile da capire per chi non ha dimestichezza con questa materia. È importante approfondire tale studio, leggendo moltissimi esempi e approfondendo anche il limite nella retta reale, il limite negli spazi metrici e negli spazi topologici.

67

Guarda il video

77

Consigli

Non dimenticare mai:
  • Approfondite lo studio di questo argomento.
Alcuni link che potrebbero esserti utili:

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Segnala il video che ritieni inappropriato
Devi selezionare il video che desideri segnalare
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Superiori

Come dimostrare il teorema di Weierstrass

Discipline scolastiche come la matematica, la fisica o ancora la chimica sono molto interessanti, ma anche complicate. Le argomentazioni spiegano le dinamiche quotidiane. Tuttavia, non per tutti sono di facile comprensione. Alcuni concetti più di altri...
Università e Master

Teorema di esistenza del limite di successioni monotone: dimostrazione

Il teorema dell'esistenza del limite di successioni monotone è un noto teorema dell’analisi matematica, il quale afferma che ogni successione monotona possiede un limite. Nella guida che segue vi sarà spiegato cos'è una successione, quali tipi di...
Università e Master

Come calcolare il limite di una successione convergente

Nella matematica avanzate non è raro imbattersi nelle serie o successioni numeriche. In analisi è una stringa infinita di termini, ossia di numeri. Non si tratta di insiemi numerabili. Pertanto è fondamentale seguire l'ordine prestabilito dei termini....
Superiori

Progressioni aritmetiche e geometriche

Negli insiemi, non ha alcuna importanza l'ordine con cui vengono chiamati o scritti gli elementi. Mentre se consideriamo un insieme ordinato di numeri, cioè un insieme i cui numeri sono disposti in un certo ordine, siamo in presenza di una successione...
Università e Master

Come risolvere i limiti delle successioni irrazionali

Molti studenti avranno di certo sentito parlare di "limite di una successione". Tale limite altro non è che il valore al quale tendono i termini di una successione. Con questo concetto si vuole evidenziare l'idea che esiste sempre un punto mobile che...
Superiori

Come determinare l'esistenza del limite di una funzione

Il limite di una funzione rappresenta un concetto comprensibile se si conoscono i basilari concetti topologici. In questa guida vi spiego nel modo più semplice possibile come determinare l'esistenza del limite di una funzione. Come già saprete, il limite...
Università e Master

Teoremi centrali del limite: dimostrazione

In questa guida tratteremo uno degli argomenti chiave nello studio della probabilità. In particolare ai Teoremi centrali del limite: Dimostrazione. Infatti insieme alla legge dei grandi numeri di Bernoulli, sono considerati le fondamenta, nonché gli...
Superiori

Come verificare se una funzione è limitata

In questa guida ti insegnerò a verificare se una funzione è limitata. Metti da parte la matematica che hai studiato fino ad ora. Quello che ti insegnerò adesso sarà un metodo innovativo e alternativo. Quindi mettiti comodo e iniziamo questa fantastica...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.