Come dimostrare che la somma degli angoli interni di un triangolo è 180°

tramite: O2O
Difficoltà: media
14

Introduzione

Se prendete in esame un triangolo immaginario, considerate uno dei suoi lati, tracciate una retta che sia parallela a questo lato e scoprirete che la somma degli angoli interni di un triangolo è 180°. In questa utilissima guida vi spiego come dovete procedere per dimostrare questa tesi. Seguite le mie istruzioni con molta attenzione perché il procedimento è leggermente complicato. Niente paura però: ragionando sulle mie indicazioni capirete in fretta come fare questa dimostrazione.

24

Come spiegato prima, iniziate con il prendere in esame un triangolo qualsiasi e scegliete un suo lato. La retta parallela che dovete tracciare lungo questo lato è sempre unica per il quinto postulato. Questa è la regola più importante da ricordare. Un'altra norma che dovete sempre tenere a mente è che l'invarianza del totale di tutti gli angoli della forma geometrica presa in oggetto deriva in tutti i casi e senza eccezioni da una proprietà delle rette. Per chi non se lo ricorda preciso che questa importante regola deriva dal quinto postulato di Euclide, e questo significa che se il cosiddetto postulato dovesse cadere, la somma totale degli angoli in oggetto diventerebbe automaticamente opposta ad un angolo piatto preso in considerazione in un triangolo qualunque.

34

Come già sapete, la somma degli angoli interni di un triangolo è sempre 180°. Questa proprietà può venire usata agevolmente per calcolare l'ampiezza degli angoli di un triangolo immaginario. Adesso vi spiego come dovete procedere per dimostrare questa proprietà: prendete un triangolo e fateci passare una retta parallela, immaginando che i suoi due angoli opposti alle estremità siano alterni interni. Questo significa che la loro ampiezza è la medesima per entrambi gli angoli.

Continua la lettura
44

Adesso vi dimostrerò quanto detto sopra con dei semplici esempi pratici. Se riuscite a capire il meccanismo che sta alla base di questo teorema sicuramente potete dimostrarlo con molta precisione. Per semplicità chiamerò un angolo col nome di EAD, indicando così i tre angoli del triangolo preso in esame. Ricordatevi che parlando di angoli corrispondenti, uno di essi è sempre opposto al vertice dell'angolo interno esterno che vi ho spiegato prima. Se una retta che passa per il triangolo EAD forma un angolo piatto, il triangolo in questione avrà tutti gli angoli congruenti al totale degli angoli interni. Quindi l'angolo EAD in realtà è formato dagli angoli CAD, BAC ed EAB perché essi sono alterni interni se vengono calcolati rispetto alle parallele della retta.

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Università e Master

Teorema della bisettrice: dimostrazione

Il compito di geometria è più vicino che mai e voi non siete assolutamente preparati. La geometria si sa, non è la materia più facile del mondo, non si tratta solo di formule da imparare a memoria, ma piuttosto è tutta una questione di cervello,...
Superiori

Come dimostrare il teorema di Lagrange

Il Teorema di Lagrange è un teorema che si incontra durante lo studio delle derivate. Esso trae origine dal nome del matematico che lo ha enunciato e afferma che, data una Funzione qualsiasi f (x), "continua e derivabile" in un intervallo chiuso da "a"...
Superiori

Geometria: il teorema delle rette parallele

Due linee su un piano che non si intersecano o non si toccano in nessun punto, sono definite parallele; queste sono molto importanti durante lo studio dei quadrilateri. Gli otto angoli formati dalle linee parallele e da una trasversale risultano essere...
Superiori

Come rappresentare un'equazione lineare sul piano cartesiano

Un'equazione lineare è un'equazione algebrica di primo grado, ovvero che il grado massimo dei termini che le appartengono è uno. Per poter rappresentare qualsiasi genere di curva sul piano cartesiano, è necessario ridurre l'equazione, di qualunque...
Superiori

come dimostrare il teorema delle tre perpendicolari

Il teorema delle tre perpendicolari si occupa di studiare alcune caratteristiche della posizione di due linee rette e delle sue perpendicolari. Nel piano due rette sono perpendicolari, se si incontrano formando angoli uguali, che si possono definire così...
Superiori

Come dimostrare che un punto appartiene ad un piano

La geometria è un ramo della matematica, dove con teoremi e postulati si cerca di dimostrare o risolvere figure di diversa tipologia e complessità. Molto spesso per molti studenti la geometria rappresenta un notevole ostacolo da superare, soprattutto...
Superiori

Come dimostrare il teorema dell'angolo esterno

La geometria comprende lo studio delle figure geometriche piane e solide e anche delle rette, degli angoli, dei perimetri, dei volumi e delle aree che in questa guida sarà illustrato. Il teorema dell'angolo esterno riveste una notevole importanza nel...
Superiori

Come Dimostrare Il Calcolo Delle Derivate (f(x)=k)

In matematica una buona dose di conoscenza e preparazione è sempre base imprescindibile per avere una corrispondenza coi risultati. Inoltre, diversamente dalle altre materie che possono incontrarsi nel percorso scolastico, difficilmente la matematica...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.