A questo punto, ricorda che il primo valore delle coordinate si riferisce alla x, il secondo alla y. Fare le derivate seconde dei temini xx; xy; yx; yy ed inserirle in una matrice, sostituendo una per volta al posto di x ed y le coordinate dei punti critici trovati in precedenza. Ora abbiamo il passaggio più delicato, prestate attenzione!!! Moltiplicare i termini "xx" e "yy" e i termini "xy" e "yx", in seguito sottrarre il primo risultato al secondo. Possiamo ottenere più risultati:-se il risultato sarà positivo e la derivata di "xx" è positiva allora la funzione presenterà un minimo relativo;-se il risultato sarà positivo e il termine "xx" è negativo la funzione presenterà un massimo relativo;-se, invece, il risultato sarà negativo e il termine "xx" è negativo la funzione presenterà un punto di sella.
Spero che questo articolo amatoriale possa aiutare tutte le persone che si trovano in difficoltà con la matematica che sembra un mostro, ma che in realtà si compone di tanti semplici passi logici!