Come calcolare la funzione di ripartizione empirica
Introduzione
Quando si affronta lo studio a scuola o all'università, ci si può imbattere in argomenti o materie piuttosto complesse e ostiche. In questa guida affronteremo un tema che può generare non pochi grattacapi. Infatti vederemo il concetto di funzione di ripartizione empirica e vi indicheremo lo svolgimento più adeguato per risolverla. Vediamo, quindi, come calcolare la funzione di ripartizione empirica.
Occorrente
- Un buon libro di statistica
La rappresentazione
La rappresentazione di una funzione di ripartizione empirica, consiste in un procedimento abbastanza laborioso e complicato, che abbraccia il campo della statistica e del calcolo delle probabilità. Se non siete in grado di calcolare correttamente tale funzione, non temete.
La funzione di ripartizione
Per comprendere meglio il concetto, esaminiamo la seguente formula:
F (y) = P (Y ? y) .
In un determinato evento, la funzione di ripartizione permette di collegare ad ogni valore di y la possibilità della variabile causale Y di assumere valori minori o uguali a y. Quindi, la funzione F avrà come dominio R (cioè l?insieme reale) e, come immagine, l?intervallo [0,1]: Vediamo, quindi, quali sono i criteri di calcolo. Considerando che la funzione F (y) indica il numero di osservazioni del fenomeno uguali o minori a y, la sua espressione sarà la seguente:
F (y)= 0 se y F (y)= Fi =? j ? i fi se yi ?yF (y)= 1 se x?xn .
Dove, Fi sono le frequenze cumulate e y1, ?, yn sono gli intervalli di osservazione, ordinati in senso crescente.
F: R ? [0,1].
Il concetto generale
Avete trovato la guida giusta per voi. Una funzione di ripartizione, detta anche funzione di probabilità cumulata, o di distribuzione cumulativa, è una funzione di variabile reale. Quindi un fenomeno che opera su numeri reali, per modificarli in altri numeri, altrettanto reali. In altre parole, agisce sul dominio R, o su un suo sottoinsieme, fornendo indicazioni su un determinato fenomeno (sia esso un evento accidentale o un insieme di dati), in relazione ad un suo intervento prima o dopo un certo punto. Chiarito il concetto generale, andiamo a delineare dettagliatamente la nozione statistica di funzione di ripartizione empirica. Il suo uso è necessario per la quantificazione e la misura dei fenomeni non su scala nominale, ma su scala intervallare, ordinale e proporzionale. Ricordiamo che la scala intervallare è necessaria per la quantificazione della diversità tra due valori e per la loro ordinazione. La scala ordinale serve a stabilire se un valore è maggiore, uguale o minore ad un altro. Mentre quella proporzionale si usa per definire la proporzione tra due valori e la loro possibile differenza.
Consigli
- Studio regolare ed esercitazione costante