Come trovare le rette tangenti ad una circonferenza in geometria analitica (metodo del delta)

di Alessandro Floris difficoltà: media

Come trovare le rette tangenti ad una circonferenza in geometria analitica (metodo del delta)Leggi La geometria analitica o cartesiana è una disciplina molto importante della matematica, e si riferisce allo studio delle figure geometriche attraverso il sistema di coordinate cartesiane. Ogni punto del piano cartesiano si indica con P (x, y), in quanto è definito dalle sue coordinate sul piano delle ascisse (x) e delle ordinate (y). In questa guida vedremo come trovare le rette tangenti ad una circonferenza utilizzando il metodo del delta.

Assicurati di avere a portata di mano: Problema da risolvere Impegno Conoscenza dei concetti base di geometria analitica

1 Come trovare le rette tangenti ad una circonferenza in geometria analitica (metodo del delta)Leggi Consideriamo una circonferenza qualsiasi di equazione x^2 + y^2 + ax + by + c = 0 e un punto P (x0; y0). Sono possibili tre casi differenti:
1) Il punto P è interno alla circonferenza; nessuna retta tangente passa per P.
2) Il punto P appartiene alla circonferenza; una retta tangente passa per P.
3) Il punto P è esterno alla circonferenza; due rette tangenti alla circonferenza passano per P.
Nello screenshot è possibile vedere un esempio dei 3 casi appena descritti.

2 METODO DEL DELTA
Vediamo come utilizzare il metodo del delta=0 per trovare le equazioni delle rette tangenti nei casi 2 e 3.
Per prima cosa mettiamo a sistema l'equazione del fascio di rette passante per P (x0; y0) e l'equazione della circonferenza, e otteniamo:
y - y0 = m (x - x0)
x^2 + y^2 + ax + by + c = 0
Ora dobbiamo ricavare la y dall'equazione del fascio di rette e la sostituiamo nell'equazione della circonferenza. Otteniamo così un'equazione di secondo grado in y che sarà funzione della variabile x e del coefficiente m.

Continua la lettura

3 Per risolvere l'equazione di secondo grado imponiamo che il discriminante o delta sia uguale a 0 (delta = b^2 - 4ac=0), in quanto affinché la retta sia tangente alla circonferenza nel punto P, le due soluzioni devono essere coincidenti.  Infatti le due soluzioni indicano i due punti appartenenti contemporaneamente alla retta e alla circonferenza.
Dopodiché si risolve l'equazione ottenuta rispetto a m.  Approfondimento Come Determinare L'Equazione Di Una Circonferenza Per Condizioni (clicca qui) Se si trovano 2 soluzioni le rette tangenti saranno 2, una con coefficiente m1 e l'altra con coefficiente m2.  Se invece si trova un unica soluzione la retta tangente sarà una sola con coefficiente m.
Infine, per trovare l'equazione delle rette tangenti si sostituiscono i valori dei coefficienti m ottenuti nell'equazione del fascio di rette iniziale.. 

4 A conclusione della guida vediamo un esempio numerico.
Problema: Trovare le equazioni delle rette tangenti alla circonferenza di equazione x^2 + y^2 - 4y + 3 = 0 condotte dal punto P (2;3).

Equazione del fascio: y - 3 = m (x - 2)

Sistema:
y - 3 = m (x - 2)
x^2 + y^2 - 4y + 3 = 0

Otteniamo la y dal fascio di rette:
y = m (x - 2) + 3

Sostituiamo la y nell'equazione della circonferenza:
x^2 + [mx - 2m + 3]^2 - 4[mx - 2m + 3] + 3 = 0
=... = (1 + m^2) x^2 + (-4m^2 + 2m) x + 4m^2 - 4m - 9= 0

Imponiamo il delta a 0:
delta = 20m^2 + 16m = m (20 + 16m) = 0

Otteniamo :
m1=0
m2= -(5/4)

I coefficienti angolari sono due, quindi la circonferenza avrà due tangenti, ovvero le rette di equazione
Y=3
3Y-4X-1=0

Come risolvere un'equazione differenziale Come calcolare l'equazione dell'asse di un segmento Come definire la posizione di una retta rispetto una circonferenza Come determinare l'equazione di una retta passante per un punto e parallela ad un'altra retta

Stampa la guida Segnala inappropriato
Devi inserire una descrizione del problema

Altre guide utili