Come trovare il limite di una funzione trigonometrica

tramite: O2O
Difficoltà: media
18

Introduzione

Anche se l'analisi matematica potrebbe sembrare un argomento molto complesso, i suoi teoremi, le sue formule ed i suoi esercizi sono esplicativi e dimostrativi dell'applicazione di teorie. Pertanto, entrando nell'ottica di questa affascinante materia e comprendendone il meccanismo, si può godere di notevoli soddisfazioni, ogniqualvolta si arriva alla risoluzione di un problema affrontato. In matematica il criterio di limite è di fondamentale importanza, perché consente svariati tipi di calcolo, come ad esempio quello di sommare elementi infiniti sempre più piccoli che ci condurranno ad un risultato abbastanza vicino alla realtà, ossia ad un valore che può essere: finito, infinito o inesistente. In altri termini si tratta di un valore che viene avvicinato sempre più da una funzione senza mai essere raggiunto da essa. Questo succede nel caso in cui la variabile indipendente (generalmente x) tende a zero, a infinito o ad un valore specifico dell'intervallo di esistenza della funzione. Vediamo dunque come trovare il limite di una funzione trigonometrica.

28

Occorrente

  • Foglio, righello, compasso, matita.
38

Una funzione goniometrica (o trigonometrica) è una funzione che ci permette di studiare gli angoli e sono fondamentali per il calcolo dei lati di un triangolo. Tutti le conosciamo come: seno: sen (x), coseno: cos (x), tangente: tan (x), cotangente: cotan (x), arcotangente: arctan (x).

48

Prima di procedere con il calcolo del limite dobbiamo prima ricavare il campo di esistenza della funzione, ossia quell'intervallo per cui la funzione risulta un valore accettabile di y, dove y=f (x). Solitamente il dominio è esteso a tutto il campo dei numeri reali, però esistono casi particolari. Il primo riguarda le equazioni fratte, dove si pone il denominatore diverso da 0. Il secondo sono i radicali, in cui l'argomento della radice deve essere maggiore o uguale a 0. Infine abbiamo i logaritmi, nei quali l'argomento deve essere maggiore di zero.

Continua la lettura
58

Per quanto riguarda invece le funzioni trigonometriche, il campo di esistenza agisce sugli angoli, e quindi abbiamo un intervallo del tipo (-2x, 2x), dove x corrisponde al pigreco (in angolo 180°). A questo punto iniziamo ad eseguire lo studio della nostra funzione calcolando il dominio di essa. Se non presenta proprietà particolari, calcoliamo il limite (destro e sinistro) su tutto l'angolo giro, in caso contrario bisogna fare l'operazione sull'intervallo adeguato.

68

Osserviamo ora il risultato: se uno dei due limiti, destro o sinistro, risulta infinito o non esistente, allora avremo una discontinuità di 2° specie e la funzione convergerà a più o meno infinito secondo l'asintoto verticale x=a, dove a è il valore per cui calcoliamo il limite. La funzione, di conseguenza, convergerà o divergerà a seconda dei risultati. Va detto, quindi, che tale spiegazione è molto generale poiché varia da funzione a funzione; però vi può aiutare a capire meglio l'operazione di limite per un equazione goniometrica.

78

Guarda il video

88

Consigli

Non dimenticare mai:
  • La geometria e la matematica sono materie appassionanti, alle quali applicare interesse e volontà.
Alcuni link che potrebbero esserti utili:

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Segnala il video che ritieni inappropriato
Devi selezionare il video che desideri segnalare
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Superiori

Come risolvere una variabile in una funzione trigonometrica

Volete capire come risolvere una variabile in una funzione trigonometrica? Siete nel posto giusto. Dovete sapere che ci sono un numero infinito di soluzioni a questo problema. In primo luogo isolate il termine tangente. Per risolvere per x, dobbiamo isolare...
Superiori

Come calcolare il dominio di una funzione trigonometrica

Il dominio di una funzione indica l'insieme di definizione della funzione stessa, praticamente indica in quali parti del piano la funzione esiste. Le funzioni trigonometriche o goniometriche sono funzioni di un angolo. Le funzioni trigonometriche di base...
Superiori

Come disegnare il grafico di una funzione trigonometrica

La Trigonometria è una branca della disciplina della matematica. Tramite la Trigonometria, si possono calcolare le misure sia degli angoli che dei lati di un triangolo. Il tutto è possibile con la conoscenza dei valori di almeno tre di questi dati....
Superiori

Come risolvere le equazioni trigonometriche

La risoluzione delle equazioni trigonometriche è un argomento su cui gli studenti hanno particolari problemi. Ci sono alcune ragioni per queste difficoltà: di solito c'è una parte di semplificazione che richiede l'uso di alcune identità trigonometriche;...
Superiori

Come tracciare il grafico di una funzione trigonometrica

La trigonometria è quella scienza matematica che ha per oggetto lo studio dei triangoli, partendo proprio dagli angoli che li compongono. Grazie alle regole e alle funzioni della trigonometria dunque, è possibile calcolare le misure dei vari elementi...
Superiori

Come determinare il dominio di una funzione goniometrica

Non è sempre facile la vita dello studente, alcune materie spesso risultano ardue da apprendere, come la goniometria che piace a pochi e risulta difficile al resto degli studenti. Non disperate però, in questa guida vi insegneremo come determinare il...
Superiori

Come calcolare il coseno di un angolo

In trigonometria, dato un triangolo rettangolo, il coseno di uno dei due angoli interni adiacenti all'ipotenusa è definito come il rapporto tra le lunghezze del cateto adiacente all'angolo e dell'ipotenusa. Più in generale, il coseno di un angolo alpha,...
Superiori

Come applicare la formula di De Moivre ai numeri complessi

Per numero complesso si intende un numero costituito da una parte immaginaria e da una parte reale. Può quindi essere rappresentato dalla somma di un numero reale e di un numero immaginario. Quando si lavora nel campo dei numeri complessi, le prime cose...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.