Come risolvere un sistema di primo grado a 3 incognite col metodo di sostituzione

di Unknown Unknown tramite: O2O difficoltà: facile

Nel caso in cui ti piace la matematica, oppure se ti è stato assegnata un'equazione da risolvere e non sai da dove partire, sei capitato nel posto giusto. Spesso la matematica rappresenta una disciplina difficile da comprendere, ma se si comprende il funzionamento di questa materia e si possiedono delle buone basi, si può arrivare a risolvere i più complicati problemi. Per prima cosa, pertanto, occorre accertarsi di avere una buona base dalla quale partire, per poi ripassare le principali operazioni con una certa frequenza. Queste ultime, infatti, serviranno in futuro, e per mantenere la mente allenata. Un sistema di primo grado a tre equazioni con tre incognite rappresenta un sistema come quello raffigurato nell'immagine principale di questa guida. Esistono differenti metodologie per procedere alla sua risoluzione. Tra queste, possiamo annoverare un sistema alquanto semplice, che è il cosiddetto "Metodo di Sostituzione". Questo consente di riconoscere la prima incognita, ed a seconda di questa, è possibile arrivare a conoscere le altre due. In questa semplice ed esauriente guida, grazie ad un esempio pratico, vedremo come applicarlo a tutti quanti i sistemi di questo genere. Vi consigliamo, tra l'altro, di osservare accuratamente tutte quante le immagini che abbiamo inserito ad ogni passo, in quanto saranno utili per la comprensione della spiegazione. Vediamo, dunque, come procedere.

Assicurati di avere a portata di mano: Sistema dato Alcune semplici nozioni matematiche

1 Supponiamo di dover risolvere con il metodo di sostituzione il sistema di primo grado di 3 equazioni a 3 incognite presente nell'immagine allegata. Per prima cosa, occorre iniziare la risoluzione del sistema, ricavando il valore della "x" a partire dalla prima equazione, e sostituendo questo valore al posto della "x" stessa nelle altre due equazioni. A seguire, si deve ottenere il risultato presente nella parte 2 dell'immagine. Di seguito, è necessario risolvere le ultime due, ed ottenere il risultato presente nella parte 3 della stessa immagine.

2 Procedere, quindi, risolvendo il sistema formato da queste ultime due equazioni, nelle incognite "y" e "z". Per farlo in maniera alquanto semplice, è possibile servirsi della regola di Cramer, per poi andare a calcolare i vari determinanti. Ricordando la norma generale, è possibile scrivere tutto quello che si può visualizzare nella figura del passo numero 1. Ne segue, quindi, il passo 2. Ovviamente, le incognite "x" ed "y", in questo caso devono essere definite rispettivamente come "y" e "z". Quindi, si può scrivere il sistema da risolvere come descritto nel passo 3 sottostante.

Continua la lettura

3 Da questi calcoli è possibile ricavare il valore delle incognite "y" e "z" come segue nella parte 1 dell'immagine.  Successivamente, una volta che si conosce il valore di queste, si deve andare a sostituirli alle incognite stesse all'interno della prima equazione del sistema di partenza, precedentemente risolta rispetto ad "x".  Approfondimento Come risolvere un sistema di equazioni a due incognite (clicca qui) Si ottiene, a questo punto, quanto segue.  Questo significa che il sistema di partenza ammette un'unica soluzione, e che questa è determinata dai numeri (1; 3; 2).  Sperando di essere stati di supporto agli studenti di questa disciplina, non ci resta che augurarvi buona esercitazione.

Come implementare la risoluzione di sistemi di equazioni in Matlab Si inizia a sentir parlare di equazioni già a partire dalla ... continua » Come risolvere un sistema a due incognite In matematica, per sistema di equazioni a due incognite si intende ... continua » Come risolvere un sistema di primo grado col metodo di confronto Un sistema di primo grado di due equazioni è un sistema ... continua » Come risolvere i sistemi lineari di due equazioni a due incognite Quanti di voi hanno trascorso delle ore davanti ad un libro ... continua »

Stampa la guida Segnala inappropriato
Devi inserire una descrizione del problema

Altre guide

Come risolvere le equazioni

Una materia che può presentare degli aspetti anche piuttosto ardui da comprendere è senza ombra di dubbio la matematica. In questa guida porremo l'attenzione ... continua »

I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer»”.