Come risolvere un sistema di primo grado a 3 incognite col metodo di sostituzione

tramite: O2O
Difficoltà: facile
15

Introduzione

Nel caso in cui ti piace la matematica, oppure se ti è stato assegnata un'equazione da risolvere e non sai da dove partire, sei capitato nel posto giusto. Spesso la matematica rappresenta una disciplina difficile da comprendere, ma se si comprende il funzionamento di questa materia e si possiedono delle buone basi, si può arrivare a risolvere i più complicati problemi. Per prima cosa, pertanto, occorre accertarsi di avere una buona base dalla quale partire, per poi ripassare le principali operazioni con una certa frequenza. Queste ultime, infatti, serviranno in futuro, e per mantenere la mente allenata. Un sistema di primo grado a tre equazioni con tre incognite rappresenta un sistema come quello raffigurato nell'immagine principale di questa guida. Esistono differenti metodologie per procedere alla sua risoluzione. Tra queste, possiamo annoverare un sistema alquanto semplice, che è il cosiddetto "Metodo di Sostituzione". Questo consente di riconoscere la prima incognita, ed a seconda di questa, è possibile arrivare a conoscere le altre due. In questa semplice ed esauriente guida, grazie ad un esempio pratico, vedremo come applicarlo a tutti quanti i sistemi di questo genere. Vi consigliamo, tra l'altro, di osservare accuratamente tutte quante le immagini che abbiamo inserito ad ogni passo, in quanto saranno utili per la comprensione della spiegazione. Vediamo, dunque, come procedere.

25

Occorrente

  • Sistema dato
  • Alcune semplici nozioni matematiche
35

Supponiamo di dover risolvere con il metodo di sostituzione il sistema di primo grado di 3 equazioni a 3 incognite presente nell'immagine allegata. Per prima cosa, occorre iniziare la risoluzione del sistema, ricavando il valore della "x" a partire dalla prima equazione, e sostituendo questo valore al posto della "x" stessa nelle altre due equazioni. A seguire, si deve ottenere il risultato presente nella parte 2 dell'immagine. Di seguito, è necessario risolvere le ultime due, ed ottenere il risultato presente nella parte 3 della stessa immagine.

45

Procedere, quindi, risolvendo il sistema formato da queste ultime due equazioni, nelle incognite "y" e "z". Per farlo in maniera alquanto semplice, è possibile servirsi della regola di Cramer, per poi andare a calcolare i vari determinanti. Ricordando la norma generale, è possibile scrivere tutto quello che si può visualizzare nella figura del passo numero 1. Ne segue, quindi, il passo 2. Ovviamente, le incognite "x" ed "y", in questo caso devono essere definite rispettivamente come "y" e "z". Quindi, si può scrivere il sistema da risolvere come descritto nel passo 3 sottostante.

Continua la lettura
55

Da questi calcoli è possibile ricavare il valore delle incognite "y" e "z" come segue nella parte 1 dell'immagine. Successivamente, una volta che si conosce il valore di queste, si deve andare a sostituirli alle incognite stesse all'interno della prima equazione del sistema di partenza, precedentemente risolta rispetto ad "x". Si ottiene, a questo punto, quanto segue. Questo significa che il sistema di partenza ammette un'unica soluzione, e che questa è determinata dai numeri (1; 3; 2). Sperando di essere stati di supporto agli studenti di questa disciplina, non ci resta che augurarvi buona esercitazione.

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Superiori

Come risolvere un sistema di equazioni a due incognite

All'interno di questa guida, andremo a parlare di matematica. Indubbiamente, essa è una materia che potrebbe risultare indigesta per qualcuno. Entrando nel dettaglio, andremo a parlare di equazioni con due incognite. Proveremo a fornire una risposta...
Superiori

Come risolvere un'equazione a due incognite

È risaputo ormai che la matematica rappresenta la chimera un po' per tutti gli studenti. Uno degli argomenti più ostici con cui ogni studente delle scuole superiori si troverà prima o poi a confrontarsi, sono sicuramente le equazioni. Si tratta di...
Superiori

Come risolvere un sistema di tre equazioni

Capita spesso che ci si possa trovare in difficoltà nel seguire il programma di studio a causa di un argomento che non si è capito, perché tutti i procedimenti sono collegati tra loro; queste mancanze uno studente rischia di portarsele fino a fine...
Università e Master

Appunti sui sistemi lineari

Questa guida è finalizzata a introdurre le definizioni dei termini utilizzati nei sistemi di equazioni lineari e a illustrare i teoremi e i metodi di analisi e di risoluzione di tali sistemi. Prima di iniziare è bene precisare che per la comprensione...
Superiori

Come risolvere un sistema di equazioni non lineari

Presto o tardi tutti noi ci troviamo a fare i conti con i sistemi di equazioni non lineari. I sistemi non lineari sono dei sistemi di equazioni che contengono delle incognite non lineari, ovvero che non possono essere espresse mediante somma e moltiplicazione...
Università e Master

Il Teorema di Rouché-Capelli

In Algebra lineare, il Teorema di Rouché-Capelli enuncia che un sistema lineare di m equazioni a n incognite ha soluzione, se e solo se, il rango della matrice incompleta è uguale al rango della matrice completa del sistema (Definizione Geometria Lineare)....
Superiori

Come risolvere un sistema di equazioni

Un argomento che viene sicuramente affrontato dopo aver svolto molte equazioni è quello del sistema di equazioni. Il sistema mette in relazione, grazie ad una parentesi graffra, due o più equazioni tra loro. Risolvere questo genere di esercizio di matematica...
Superiori

Come trovare l'equazione di una parabola passante per 3 punti

La geometria analitica è quel ramo della matematica che si occupa dello studio delle funzioni all'interno del piano cartesiano. Il comportamento e il grafico delle funzioni sono descritti da equazioni. Per le rette si tratta di equazioni di primo grado;...
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.