Come Fattorizzare Un Polinomio

tramite: O2O
Difficoltà: facile
16

Introduzione

Se siete alle prese con lo studio della matematica e vi servono dei chiarimenti su come fattorizzare un polinomio, nella guida che segue vi saranno fornite tutte le spiegazioni utili affinché possiate capire tale concetto. Ricordate innanzitutto che è di fondamentale importanza saper portare un polinomio nella sua forma ridotta, cioè fattorizzarlo. Vediamo insieme, passo dopo passo, come procedere e quale metodo adottare per tale scopo.

26

Occorrente

  • Nozioni base di algebra
36

Utilizzare il criterio di Einstein

La fattorizzazione in insiemi più semplici come Z e Q è vincolata da leggi più restrittive e quindi non è sempre semplice da attuare. Per semplificare le cose potete certamente utilizzare il criterio di Einstein. Quest'ultimo afferma che se esiste un numero primo che divide tutti i coefficienti, eccetto quello legato alla variabile con l'esponente maggiore e il quadrato di tale numero non divide il termine noto, allora il polinomio è irriducibile in Q[x] (insieme dei polinomi a coefficienti in Q). Inoltre se tale polinomio è primitivo, sarà irriducibile anche in Z[x]. Buono studio.

46

Effettuare una scomposizione del polinomio

Ovviamente non tutti i polinomi sono scomponibili nell'insieme dei numeri reali e quindi dovete prestare molta attenzione a questo. Infatti, nel caso in cui la radice di un polinomio non appartiene a quell'insieme, non è possibile effettuare una scomposizione del polinomio. Per esempio X^2 più 1 non è scomponibile in R perché le sue radici sono "i" e "-i". Questi due numeri appartengono all'insieme dei numeri complessi C e quindi questo polinomio è fattorizzabile solo in C o in un insieme che lo contiene interamente.

Continua la lettura
56

Trovare le radici del polinomio

Per ridurre un polinomio è necessario innanzitutto trasformare un polinomio di grado maggiore nel prodotto di due o più polinomi di grado inferiore a quello. Per ridurre un polinomio in R potete ricorrere a varie metodologie di cui siete a conoscenza, ma il migliore è trovare le radici del polinomio, ovvero le soluzioni dell'equazione del polinomio posto uguale a zero. Nel caso in cui questo sia di grado due, basterà utilizzare la formula risolutiva delle equazioni di secondo grado. Se invece l'equazione ha grado maggiore rispetto al secondo, la maniera più adatta è quella di procedere per tentativi utilizzando non dei numeri presi a caso, ma i divisori del termine noto, cioè il coefficiente che non ha alcuna incognita accanto. Successivamente disponete tali numeri al posto dell'incognita nel polinomio e quando otterrete zero come risultato potrete ricavare una radice del polinomio.

66

Consigli

Non dimenticare mai:
  • Per capire bene la fattorizzazione di un polinomio dovrete eseguire parecchi esercizi.
Alcuni link che potrebbero esserti utili:

Potrebbe interessarti anche

Segnala contenuti non appropriati

Tipo di contenuto
Devi scegliere almeno una delle opzioni
Descrivi il problema
Devi inserire una descrizione del problema
Si è verificato un errore nel sistema. Riprova più tardi.
Verifica la tua identità
Devi verificare la tua identità
chiudi
Grazie per averci aiutato a migliorare la qualità dei nostri contenuti

Guide simili

Superiori

Come risolvere l'integrale di una funzione razionale

Saper calcolare gli integrali di una funzione razionale rappresenta uno degli strumenti fondamentali non solo per un matematico, ma anche per ogni geometra, ingegnere o fisico. Acquisire pratica e dimestichezza con le tecniche di risoluzione richiede...
Elementari e Medie

Come scomporre con Ruffini

Ruffini è uno degli argomenti più odiati da qualsiasi studente, sia esso di medie che di liceo, tuttavia è il metodo di scomposizione di un polinomio di grado "n" più generale possibile ed è indispensabile conoscerlo. In questa guida illustreremo...
Superiori

La scomposizione di polinomi in fattori

Scomporre i polinomi in fattori significa riscrivere un polinomio in maniera semplificata per poterlo poi elaborare più semplicemente e velocemente, senza che se ne pregiudichi la corretta equivalenza con il polinomio originale. Nel corso del tempo sono...
Superiori

Come scomporre polinomi di terzo grado

In quest'articolo spiegherò come scomporre un polinomio di terzo grado; cercherò di fornire utili strumenti e di dare chiarimenti con semplici esempi. Parto dalla considerazione che la scomposizione o fattorizzazione di un polinomio non sempre è un...
Superiori

Trovare le radici di un polinomio con il teorema degli zeri razionali

In questa guida oggi vi insegneremo come trovare le radici di un polinomio con il teorema degli zeri razionali. Se dovrete trovare le radici di un polinomio, e non sapete proprio come poter fare, non dovrete preoccuparvi, questo articolo farà il caso...
Superiori

Come risolvere le espressioni con le frazioni algebriche

Una frazione algebrica è il rapporto tra due monomi o tra due polinomi. Un monomio è un prodotto tra lettere e numeri. La parte numerica è detta coefficiente, mentre le lettere sono detti parti letterali. Un polinomio invece è la somma o la differenza...
Università e Master

Come calcolare l'integrale di un quoziente di polinomi

L'analisi matematica è spesso un ostacolo per molti studenti. La complessità della materia deriva dalle numerose nozioni, definizioni e dai teoremi che sono presenti all'interno del programma. Una buona parte dell'esame richiede però lo svolgimento...
Superiori

Calcolo letterale tra polinomi

Il polinomio viene definito come un'espressione algebrica rappresentata dalla somma di uno o di più monomi denominati termini. In base al numero di questi ultimi, il polimonio cambia nome: se sono due sarà un binomio, se non tre trinomio e via dicendo....
I presenti contributi sono stati redatti dagli autori ivi menzionati a solo scopo informativo tramite l’utilizzo della piattaforma www.o2o.it e possono essere modificati dagli stessi in qualsiasi momento. Il sito web, www.o2o.it e Arnoldo Mondadori Editore S.p.A. (già Banzai Media S.r.l. fusa per incorporazione in Arnoldo Mondadori Editore S.p.A.), non garantiscono la veridicità, correttezza e completezza di tali contributi e, pertanto, non si assumono alcuna responsabilità in merito all’utilizzo delle informazioni ivi riportate. Per maggiori informazioni leggi il “Disclaimer »”.